

Workshop on Modeling in Cell Biology: Scale and Granularity May 18-19, 2015 Hyatt Regency San Francisco Airport 1333 Bayshore Hwy, Burlingame, CA 94010

Day 1 Monday May 18

8.00 – Registration/Breakfast Refreshments Harbour Room AB - (LOBBY)

9:00 Wallace Marshall University of California, San Francisco Welcome and introduction

9:10 Jianhua Xing

University of Pittsburgh Molecular cooperativity leads to monoallelic olfactory receptor expression----importance of physical insight in cell biology modeling

9:30 Adriana Dawes

Ohio State University Modeling microtubule organization in the presence of motor proteins

9:50 Jian Liu NIH

The tale of two distinct actin networks in focal adhesion mechanosensing

10:10 Jun Allard

University of California, Irvine Mechanics of the cell surface in immune signaling

10:30-11:00 BREAK

11:00 William Hlavacek Los Alamos National Lab Predicting how submolecular details influence behaviors of cellular regulatory systems

11:20 James Faeder University of Pittsburgh Rule based modeling in cell biology: Capabilities and prospects

11:40 Carlos Lopez Vanderbilt University PySB: a modeling framework for mathematical simulations of cell-decision processes and cellular communities

12:00 – 1:30 LUNCH - Scalini Room (Atrium)

1:30 Erkan Tuzel

Worcester Polytechnic Cancer Research Center *Cooperative* intracellular transport by populations of fast and slow kinesin motors

1:50 Ram Dixit

Washington University St. Louis Integrating modeling and experiments to understand noncentrosomal microtubule organization

2:10 Lan Ma

University of Texas at Dallas Regulation of P53 oscillations by mircoRNA- mediated positive feedback loops

2:30 Jia Wu

Northwestern University Sliding window regression methods for biological time-series

2:50 - 3:10 BREAK

3:10 – 3:45 BREAKOUT SESSION I Oak Room (Atrium) Conifer Room (Atrium)

3:50 Neda Bagheri

Northwestern University Predicting emergent dynamics by integrating intra- and inter-cellular signaling

4:10 - 4:40 BREAK

4:40 Zaida Luthey-Schulten

University of Illinois Simulations of cellular processes from single cells to colonies

5:00 Ivan Surovtsev

Yale University Evidence for a DNA-relay mechanism in chromosome segregation by ParABS-system

5:20 George Karniadakis

Brown University Multiscale modeling of red blood cells in health and disease

5:40 David Odde

University of Minnesota Simulating microtubule self-assembly

6:00 - 8:00 DINNER - Scalini Room (Atrium)

Day 2 Tuesday May 19

8:00 – Breakfast/Refreshments Scalini Room (Atrium)

9:00 Wallace Marshall University of California, San Francisco Discuss plans for breakout session

9:10 Lishibanya Mohapatra Brandeis University How cells control the size of their organelles

9:30 Charles Little University of Kansas Emergent ECM, cellular and tissue-scale motion patterns during amniote morphogenesis

9:50 Andras Czirok University of Kansas Modeling elasto-plastic tissue deformations and their driving forces

10:10 Wenying Shou Fred Hutchinson Cancer Research Center Spatial self-organization in microbial communities

10:30 - 11:00 BREAK

11:00 Bin Zhang Icahn School of Medicine at Mount Sinai Network modeling of immune response in complex human diseases

11:20 Julien Berro Yale University Quantitative approaches to unravel the molecular mechanisms of clathrin-mediated endocytosis

11:40 Leslie Loew University of Connecticut Health Center Multiscale and multiphysics modeling with VCell

12:00 – 1:30 LUNCH Scalini Room (Atrium)

1:30 Greg Warr National Science Foundation NSF vision for quantitative cell biology

1:50 Holly Goodson University of Notre Dame Reconsidering the concept of "critical concentration" as it applies to microtubules and other steady-state polymers

2:10 Chuan Xue Ohio State University A stochastic multiscale model that explains the segregation of axonal microtubules and neurofilaments in neurological diseases

2:30 Erin Jonasson University of Notre Dame Tau binding laterally to the microtubule lattice promotes microtubule stabilization

2:50 - 3:10 BREAK

3:10 – 4:10 BREAKOUT SESSION II OAK ROOM (Atrium) CONIFER ROOM (Atrium)

4:10 - 4:40 BREAK

4:40 Maria Minakova University of North Carolina Utilizing local stability analysis to investigate models of polarity establishment: method overview and application

5:00 Haicen Yue University of California, San Diego Combining modeling and experiments to probe cellular memory

5:20 John Sauls University of California, San Diego *Cell-size homeostasis in bacteria*

5:40 Tim Elston University of North Carolina at Chapel Hill Gradient sensing in yeast

6:00 – 8:00 DINNER - Scalini Room (Atrium)